DEPARTMENT OF PHYSICS

Syllabus for Ph.D Entrance Examination

UNIT I: Mathematical Physics

Linear vector space; matrices; vector calculus; linear differential equations; complex analysis; Fourier analysis, tensors.

UNIT II: Electromagnetic Theory

Solution of electrostatic and magnetostatic problems including boundary value problems; dielectrics and conductors; Biot-Savart's and Ampere's laws; Faraday's law; Maxwell's equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves and their reflection, refraction, interference, diffraction and polarization. Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge

UNIT III: Atomic and Molecular Physics

Spectra of one- and many-electron atoms; LS and jj coupling; hyperfine structure; Zeeman and Stark effects; electric dipole transitions and selection rules; X-ray spectra; rotational and vibrational spectra of diatomic molecules; electronic transition in diatomic molecules, Franck-Condon principle; Raman effect; NMR and ESR; lasers.

UNIT IV: Solid State Physics

Elements of crystallography; diffraction methods for structure determination; bonding in solids; elastic properties of solids; defects in crystals; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids; metals, semiconductors and insulators; optical, dielectric and magnetic properties of solids; superconductivity.

UNIT V: Nuclear and Particle Physics:

Nuclear radii and charge distributions, nuclear binding energy, Electric and magnetic moments; nuclear models, liquid drop model - semi-empirical mass formula, Fermi gas model of nucleus, nuclear shell model; nuclear force and two nucleon problem; Alpha decay, Beta-decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions conservation laws; fission and fusion; particle accelerators and detectors; elementary particles.